Coumarin derivatives

Chemical structure of coumarin

Coumarin derivatives are derivatives of coumarin and are considered phenylpropanoids.[1] Among the most important derivatives are the 4-hydroxycoumarins, which exhibit anticoagulant properties, a characteristic not present for coumarin itself.

Some naturally occurring coumarin derivatives include umbelliferone (7-hydroxycoumarin), aesculetin (6,7-dihydroxycoumarin), herniarin (7-methoxycoumarin), psoralen and imperatorin.

4-Phenylcoumarin is the backbone of the neoflavones, a type of neoflavonoids.

Coumarin pyrazole hybrids have been synthesized from hydrazones, carbazones and thiocarbazones via Vilsmeier Haack formylation reaction.

Compounds derived from coumarin are also called coumarins or coumarinoids; this family includes:

Coumarin is transformed into the natural anticoagulant dicoumarol by a number of species of fungi.[7] This occurs as the result of the production of 4-hydroxycoumarin, then further (in the presence of naturally occurring formaldehyde) into the actual anticoagulant dicoumarol, a fermentation product and mycotoxin. Dicoumarol was responsible for the bleeding disease known historically as "sweet clover disease" in cattle eating moldy sweet clover silage.[7][8] In basic research, preliminary evidence exists for coumarin having various biological activities, including anti-inflammatory, anti-tumor, antibacterial, and antifungal properties, among others.[7]

  1. ^ Jacobowitz, Joseph R.; Weng, Jing-Ke (2020-04-29). "Exploring Uncharted Territories of Plant Specialized Metabolism in the Postgenomic Era". Annual Review of Plant Biology. 71 (1). Annual Reviews: 631–658. doi:10.1146/annurev-arplant-081519-035634. ISSN 1543-5008. PMID 32176525. S2CID 212740956.
  2. ^ International Programme on Chemical Safety. "Brodifacoum (pesticide data sheet)". Archived from the original on 2006-12-09. Retrieved 2006-12-14.
  3. ^ Laposata, M; Van Cott, E. M.; Lev, M. H. (2007). "Case 1-2007—A 40-Year-Old Woman with Epistaxis, Hematemesis, and Altered Mental Status". New England Journal of Medicine. 356 (2): 174–82. doi:10.1056/NEJMcpc069032. PMID 17215536.
  4. ^ International Programme on Chemical Safety. "Bromadiolone (pesticide data sheet)". Archived from the original on 2006-12-21. Retrieved 2006-12-14.
  5. ^ International Programme on Chemical Safety. "Difenacoum (health and safety guide)". Retrieved 2006-12-14.
  6. ^ Syah, Y. M.; et al. (2009). "A modified oligostilbenoid, diptoindonesin C, from Shorea pinanga Scheff". Natural Product Research. 23 (7): 591–594. doi:10.1080/14786410600761235. PMID 19401910. S2CID 20216115.
  7. ^ a b c Venugopala, K. N.; Rashmi, V; Odhav, B (2013). "Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity". BioMed Research International. 2013: 1–14. doi:10.1155/2013/963248. PMC 3622347. PMID 23586066.
  8. ^ Bye, A.; King, H. K. (1970). "The biosynthesis of 4-hydroxycoumarin and dicoumarol by Aspergillus fumigatus Fresenius". Biochemical Journal. 117 (2): 237–45. doi:10.1042/bj1170237. PMC 1178855. PMID 4192639.