Concept in quantum mechanics
In quantum mechanics, counterfactual definiteness (CFD) is the ability to speak "meaningfully" of the definiteness of the results of measurements that have not been performed (i.e., the ability to assume the existence of objects, and properties of objects, even when they have not been measured).[1][2] The term "counterfactual definiteness" is used in discussions of physics calculations, especially those related to the phenomenon called quantum entanglement and those related to the Bell inequalities.[3] In such discussions "meaningfully" means the ability to treat these unmeasured results on an equal footing with measured results in statistical calculations. It is this (sometimes assumed but unstated) aspect of counterfactual definiteness that is of direct relevance to physics and mathematical models of physical systems and not philosophical concerns regarding the meaning of unmeasured results.
- ^ Inge S. Helland, "A new foundation of quantum mechanics," p. 386: "Counterfactual definiteness is defined as the ability to speak with results of measurements that have not been performed (i.e., the ability to assure the existence of objects, and properties of objects, even when they have not been measured").
- ^ W. M. de Muynck, W. De Baere, and H. Martens, "Interpretations of Quantum Mechanics, Joint Measurement of Incompatible Observables, and Counterfactual Definiteness" p. 54 says: "Counterfactual reasoning deals with nonactual physical processes and events and plays an important role in physical argumentations. In such reasonings it is assumed that, if some set of manipulations were carried out, then the resulting physical processes would give rise to effects which are determined by the formal laws of the theory applying in the envisaged domain of experimentation.
The physical justification of counterfactual reasoning depends on the context in which it is used. Rigorously speaking, given some theoretical framework, such reasoning is always allowed and justified as soon as one is sure of the possibility of at least one realization of the pre-assumed set of manipulations. In general, in counterfactual reasoning it is even understood that the physical situations to which the reasoning applies can be reproduced at will, and hence may be realized more than once."Text was downloaded from: http://www.phys.tue.nl/ktn/Wim/i1.pdf Archived 2013-04-12 at the Wayback Machine
- ^ Enrique J. Galvez, "Undergraduate Laboratories Using Correlated Photons: Experiments on the Fundamentals of Quantum Mechanics," p. 2ff., says, "Bell formulated a set of inequalities, now known as 'Bell’s inequalities,' that would test non-locality. Should an experiment verify these inequalities, then nature would be demonstrated to be local and quantum mechanics incorrect. Conversely, a measurement of a violation of the inequalities would vindicate quantum mechanics’ non-local properties."