Cremona group

In algebraic geometry, the Cremona group, introduced by Cremona (1863, 1865), is the group of birational automorphisms of the -dimensional projective space over a field . It is denoted by or or .

The Cremona group is naturally identified with the automorphism group of the field of the rational functions in indeterminates over , or in other words a pure transcendental extension of , with transcendence degree .

The projective general linear group of order , of projective transformations, is contained in the Cremona group of order . The two are equal only when or , in which case both the numerator and the denominator of a transformation must be linear.