Cross-covariance

In probability and statistics, given two stochastic processes and , the cross-covariance is a function that gives the covariance of one process with the other at pairs of time points. With the usual notation for the expectation operator, if the processes have the mean functions and , then the cross-covariance is given by

Cross-covariance is related to the more commonly used cross-correlation of the processes in question.

In the case of two random vectors and , the cross-covariance would be a matrix (often denoted ) with entries Thus the term cross-covariance is used in order to distinguish this concept from the covariance of a random vector , which is understood to be the matrix of covariances between the scalar components of itself.

In signal processing, the cross-covariance is often called cross-correlation and is a measure of similarity of two signals, commonly used to find features in an unknown signal by comparing it to a known one. It is a function of the relative time between the signals, is sometimes called the sliding dot product, and has applications in pattern recognition and cryptanalysis.