Cube

Cube
TypePlatonic solid
Regular polyhedron
Parallelohedron
Zonohedron
Plesiohedron
Hanner polytope
Faces6
Edges12
Vertices8
Symmetry groupoctahedral symmetry
Dihedral angle (degrees)90°
Dual polyhedronregular octahedron
Propertiesconvex,
face-transitive,
edge-transitive,
vertex-transitive,
non-composite

In geometry, a cube or regular hexahedron is a three-dimensional solid object bounded by six congruent square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It is a type of parallelepiped, with pairs of parallel opposite faces, and more specifically a rhombohedron, with congruent edges, and a rectangular cuboid, with right angles between pairs of intersecting faces and pairs of intersecting edges. It is an example of many classes of polyhedra: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron.

The cube is the three-dimensional hypercube, a family of polytopes also including the two-dimensional square and four-dimensional tesseract. A cube with unit side length is the canonical unit of volume in three-dimensional space, relative to which other solid objects are measured.

The cube can be represented in many ways, one of which is the graph known as the cubical graph. It can be constructed by using the Cartesian product of graphs. The cube was discovered in antiquity. It was associated with the nature of earth by Plato, the founder of Platonic solid. It was used as the part of the Solar System, proposed by Johannes Kepler. It can be derived differently to create more polyhedrons, and it has applications to construct a new polyhedron by attaching others.