Curtright field

In theoretical physics, the Curtright field (named after Thomas Curtright)[1] is a tensor quantum field of mixed symmetry, whose gauge-invariant dynamics are dual to those of the general relativistic graviton in higher (D>4) spacetime dimensions. Or at least this holds for the linearized theory.[2][3][4] For the full nonlinear theory, less is known. Several difficulties arise when interactions of mixed symmetry fields are considered, but at least in situations involving an infinite number of such fields (notably string theory) these difficulties are not insurmountable.

The Lanczos tensor has a gauge-transformation dynamics similar to that of Curtright. But Lanczos tensor exists only in 4D.[5]

  1. ^ Curtright, T. (1985). "Generalized gauge fields". Physics Letters B. 165 (4–6): 304–308. Bibcode:1985PhLB..165..304C. doi:10.1016/0370-2693(85)91235-3.
  2. ^ Boulanger, N.; Cnockaert, S.; Henneaux, M. (2003). "A note on spin-s duality". Journal of High Energy Physics. 2003 (6): 060. arXiv:hep-th/0306023. Bibcode:2003JHEP...06..060B. doi:10.1088/1126-6708/2003/06/060. S2CID 119471366.
  3. ^ Bunster, C.; Henneaux, M.; Hörtner, S. (2013). "Twisted self-duality for linearized gravity in D dimensions". Physical Review D. 88 (6): 064032. arXiv:1306.1092. Bibcode:2013PhRvD..88f4032B. doi:10.1103/PhysRevD.88.064032. S2CID 53411620.
  4. ^ West, P. (2014). "Dual gravity and E11", arXiv:1411.0920
  5. ^ Edgar, S. Brian (March 1994). "Nonexistence of the Lanczos potential for the Riemann tensor in higher dimensions". General Relativity and Gravitation. 26 (3): 329–332. Bibcode:1994GReGr..26..329E. doi:10.1007/BF02108015. ISSN 0001-7701. S2CID 120343522.