Cyclogenesis

This collage of GOES 13 satellite images shows the development of a nor'easter over two days.

Cyclogenesis is the development or strengthening of cyclonic circulation in the atmosphere (a low-pressure area).[1] Cyclogenesis is an umbrella term for at least three different processes, all of which result in the development of some sort of cyclone, and at any size from the microscale to the synoptic scale.

  • Tropical cyclones form due to latent heat driven by significant thunderstorm activity, developing a warm core.
  • Extratropical cyclones form as waves along weather fronts before occluding later in their life cycle as cold core cyclones.
  • Mesocyclones form as warm core cyclones over land, and can lead to tornado formation. Waterspouts can also form from mesocyclones, but more often develop from environments of high instability and low vertical wind shear.

The process in which an extratropical cyclone undergoes a rapid drop in atmospheric pressure (24 millibars or more) in a 24-hour period is referred to as explosive cyclogenesis, and is usually present during the formation of a nor'easter.[2] Similarly, a tropical cyclone can undergo rapid intensification.

The anticyclonic equivalent, the process of formation of high-pressure areas, is anticyclogenesis.[3] The opposite of cyclogenesis is cyclolysis.

  1. ^ Arctic Climatology and Meteorology (2006). "Cyclogenesis". National Snow and Ice Data Center. Archived from the original on 2006-08-30. Retrieved 2006-12-04.
  2. ^ Sanders, F.; J. R. Gyakum (1980-06-12). "Synoptic-dynamic climatology of the "Bomb"" (PDF). Massachusetts Institute of Technology, Cambridge. Archived from the original (PDF) on 2016-03-05. Retrieved 2012-01-21.
  3. ^ "Cyclogenesis". Glossary of Meteorology. American Meteorological Society. 26 January 2012. Retrieved 2016-07-23.