Cytoplasmic incompatibility

Cytoplasmic incompatibility (CI) is a mating incompatibility reported in many arthropod species that is caused by intracellular parasites such as Wolbachia. These bacteria reside in the cytoplasm of the host cells (hence the name cytoplasmic incompatibility) and modify their hosts' sperm in a way that leads to embryo death unless this modification is 'rescued' by the same bacteria in the eggs. CI has been reported in many insect species (including amongst many others mosquitoes,[1] Drosophila fruit flies,[2][3] flour beetles,[4] snout moths[5] and parasitoid wasps[6]), as well as in mites[7] and woodlice.[8] Aside from Wolbachia, CI can be induced by the bacteria Cardinium,[9] Rickettsiella,[10] Candidatus Mesenet longicola[11][12] and Spiroplasma.[13] CI is currently being exploited as a mechanism for Wolbachia-mediated disease control in mosquitoes.[14]

  1. ^ Laven, Hannes (1951). "Crossing Experiments with Culex Strains". Evolution. 5 (4): 370–375. doi:10.2307/2405682. ISSN 0014-3820. JSTOR 2405682. Retrieved November 1, 2023.
  2. ^ Hoffmann, Ary A.; Turelli, Michael; Simmons, Gail M. (July 1986). "Unidirectional incompatibility between populations of Drosophila simulans". Evolution. 40 (4): 692–701. doi:10.1111/j.1558-5646.1986.tb00531.x. ISSN 1558-5646. PMID 28556160. S2CID 43623751.
  3. ^ Hoffmann, A. A.; Clancy, D. J.; Merton, E. (March 1994). "Cytoplasmic Incompatibility in Australian Populations of Drosophila Melanogaster". Genetics. 136 (3): 993–999. doi:10.1093/genetics/136.3.993. ISSN 0016-6731. PMC 1205902. PMID 8005448.
  4. ^ Wade, M. J.; Stevens, L. (February 1, 1985). "Microorganism mediated reproductive isolation in flour beetles (genus Tribolium)". Science. 227 (4686): 527–528. Bibcode:1985Sci...227..527W. doi:10.1126/science.3966160. ISSN 0036-8075. PMID 3966160.
  5. ^ Sasaki, Tetsuhiko; Ishikawa, Hajime (October 1999). "Wolbachia Infections and Cytoplasmic Incompatibility in the Almond Moth and the Mediterranean Flour Moth". Zoological Science. 16 (5): 739–744. doi:10.2108/zsj.16.739. ISSN 0289-0003. S2CID 85734865. Retrieved November 1, 2023.
  6. ^ Breeuwer, J. A.; Werren, J. H. (August 9, 1990). "Microorganisms associated with chromosome destruction and reproductive isolation between two insect species". Nature. 346 (6284): 558–560. Bibcode:1990Natur.346..558B. doi:10.1038/346558a0. ISSN 0028-0836. PMID 2377229. S2CID 4255393.
  7. ^ Breeuwer, Johannes A. J. (July 1997). "Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani". Heredity. 79 (1): 41–47. doi:10.1038/hdy.1997.121. ISSN 1365-2540. S2CID 42865450. Retrieved November 1, 2023.
  8. ^ Moret, Y; Juchault, P; Rigaud, T (March 2001). "Wolbachia endosymbiont responsible for cytoplasmic incompatibility in a terrestrial crustacean: effects in natural and foreign hosts". Heredity. 86 (3): 325–332. doi:10.1046/j.1365-2540.2001.00831.x. ISSN 0018-067X. PMID 11488969. S2CID 20992807. Retrieved November 1, 2023.
  9. ^ Gotoh, T.; Noda, H.; Ito, S. (January 2007). "Cardinium symbionts cause cytoplasmic incompatibility in spider mites". Heredity. 98 (1): 13–20. doi:10.1038/sj.hdy.6800881. ISSN 1365-2540. PMID 17035954. S2CID 7840761. Retrieved November 1, 2023.
  10. ^ Rosenwald, Laura C.; Sitvarin, Michael I.; White, Jennifer A. (July 7, 2020). "Endosymbiotic Rickettsiella causes cytoplasmic incompatibility in a spider host". Proceedings of the Royal Society B: Biological Sciences. 287 (1930). doi:10.1098/rspb.2020.1107. PMC 7423472. PMID 32635864.
  11. ^ Takano, Shun-Ichiro; Tuda, Midori; Takasu, Keiji; Furuya, Naruto; Imamura, Yuya; Kim, Sangwan; Tashiro, Kosuke; Iiyama, Kazuhiro; Tavares, Matias; Amaral, Acacio Cardoso (June 6, 2017). "Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle". Proceedings of the National Academy of Sciences of the United States of America. 114 (23): 6110–6115. Bibcode:2017PNAS..114.6110T. doi:10.1073/pnas.1618094114. ISSN 1091-6490. PMC 5468645. PMID 28533374.
  12. ^ Takano, Shun-ichiro; Gotoh, Yasuhiro; Hayashi, Tetsuya (August 1, 2021). ""Candidatus Mesenet longicola": Novel Endosymbionts of Brontispa longissima that Induce Cytoplasmic Incompatibility". Microbial Ecology. 82 (2): 512–522. doi:10.1007/s00248-021-01686-y. ISSN 1432-184X. PMID 33454808. S2CID 231636124. Retrieved November 1, 2023.
  13. ^ Pollmann, Marie; Moore, Logan D.; Krimmer, Elena; D'Alvise, Paul; Hasselmann, Martin; Perlman, Steve J.; Ballinger, Matthew J.; Steidle, Johannes L.M.; Gottlieb, Yuval (2022). "Highly transmissible cytoplasmic incompatibility by the extracellular insect symbiont Spiroplasma". iScience. 25 (5). Elsevier BV: 104335. doi:10.1016/j.isci.2022.104335. ISSN 2589-0042. PMC 9118660.
  14. ^ Ross, Perran A.; Turelli, Michael; Hoffmann, Ary A. (December 3, 2019). "Evolutionary Ecology of Wolbachia Releases for Disease Control". Annual Review of Genetics. 53: 93–116. doi:10.1146/annurev-genet-112618-043609. ISSN 1545-2948. PMC 6944334. PMID 31505135.