The DAMA/LIBRA experiment[1] is a particle detector experiment designed to detect dark matter using the direct detection approach, by using a matrix of NaI(Tl) scintillation detectors to detect dark matter particles in the galactic halo. The experiment aims to find an annual modulation of the number of detection events, caused by the variation of the velocity of the detector relative to the dark matter halo as the Earth orbits the Sun. It is located underground at the Laboratori Nazionali del Gran Sasso in Italy.
It is a follow-on to the DAMA/NaI experiment which observed an annual modulation signature over 7 annual cycles (1995-2002). The experiment was first proposed by Dr. Pierluigi Belli,[citation needed] who is now the research director of the Italian National Institute of Nuclear Physics.[citation needed]
While DAMA/LIBRA has published exciting results, the validity of those results has been widely disputed; they have not made their data or practices publicly available, and their methods of background noise reduction is such that it may actually account for a large part of their proposed signal annual modulation.[2] Two other studies, attempting to replicate the DAMA/LIBRA experiment (adhering to current publication and data availability practices) using the same method - COSINE-100 and ANAIS-112 - have shown no evidence of annual modulation.[3][4][5]
In 2020, a possible explanation of the reported modulation was pointed out as originating from the data analysis procedure. A yearly subtraction of the constant component can give rise to a sawtooth residual in the presence of a slower time dependence.[6]
Buttazzo-2020
was invoked but never defined (see the help page).