DNA polymerase V

DNA polymerase V, subunit C
Identifiers
OrganismEscherichia coli
(str. K-12 substr. MG1655)
SymbolumuC
Entrez946359
RefSeq (Prot)NP_415702.1
UniProtP04152
Other data
EC number2.7.7.7
Chromosomegenome: 1.23 - 1.23 Mb
Search for
StructuresSwiss-model
DomainsInterPro
DNA polymerase V, subunit D
Identifiers
OrganismEscherichia coli
(str. K-12 substr. MG1655)
SymbolumuD
Entrez945746
RefSeq (Prot)NP_415701.1
UniProtP0AG11
Other data
EC number3.4.21.-
Chromosomegenome: 1.23 - 1.23 Mb
Search for
StructuresSwiss-model
DomainsInterPro

DNA Polymerase V (Pol V) is a polymerase enzyme involved in DNA repair mechanisms in bacteria, such as Escherichia coli. It is composed of a UmuD' homodimer and a UmuC monomer, forming the UmuD'2C protein complex.[1] It is part of the Y-family of DNA Polymerases, which are capable of performing DNA translesion synthesis (TLS).[2] Translesion polymerases bypass DNA damage lesions during DNA replication - if a lesion is not repaired or bypassed the replication fork can stall and lead to cell death.[3] However, Y polymerases have low sequence fidelity during replication (prone to add wrong nucleotides). When the UmuC and UmuD' proteins were initially discovered in E. coli, they were thought to be agents that inhibit faithful DNA replication and caused DNA synthesis to have high mutation rates after exposure to UV-light.[2] The polymerase function of Pol V was not discovered until the late 1990s when UmuC was successfully extracted, consequent experiments unequivocally proved UmuD'2C is a polymerase. This finding lead to the detection of many Pol V orthologs and the discovery of the Y-family of polymerases.[4]

  1. ^ Sutton MD, Walker GC (July 2001). "Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination". Proceedings of the National Academy of Sciences of the United States of America. 98 (15): 8342–9. doi:10.1073/pnas.111036998. PMC 37441. PMID 11459973.
  2. ^ a b Yang W (February 2003). "Damage repair DNA polymerases Y". Current Opinion in Structural Biology. 13 (1): 23–30. doi:10.1016/S0959-440X(02)00003-9. PMID 12581656.
  3. ^ Garrett RH (2013). Biochemistry (1st Canadian ed.). Toronto: Nelson Education. p. 343. ISBN 9780176502652.
  4. ^ Goodman MF, Woodgate R (October 2013). "Translesion DNA polymerases". Cold Spring Harbor Perspectives in Biology. 5 (10): a010363. doi:10.1101/cshperspect.a010363. PMC 3783050. PMID 23838442.