This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In machine learning, the delta rule is a gradient descent learning rule for updating the weights of the inputs to artificial neurons in a single-layer neural network.[1] It can be derived as the backpropagation algorithm for a single-layer neural network with mean-square error loss function.
For a neuron with activation function , the delta rule for neuron 's -th weight is given by
where
It holds that and .
The delta rule is commonly stated in simplified form for a neuron with a linear activation function as
While the delta rule is similar to the perceptron's update rule, the derivation is different. The perceptron uses the Heaviside step function as the activation function , and that means that does not exist at zero, and is equal to zero elsewhere, which makes the direct application of the delta rule impossible.