Design for additive manufacturing

Design for additive manufacturing (DfAM or DFAM) is design for manufacturability as applied to additive manufacturing (AM). It is a general type of design methods or tools whereby functional performance and/or other key product life-cycle considerations such as manufacturability, reliability, and cost can be optimized subjected to the capabilities of additive manufacturing technologies.[1]

This concept emerges due to the enormous design freedom provided by AM technologies. To take full advantages of unique capabilities from AM processes, DfAM methods or tools are needed. Typical DfAM methods or tools includes topology optimization, design for multiscale structures (lattice or cellular structures), multi-material design, mass customization, part consolidation, and other design methods which can make use of AM-enabled features.

DfAM is not always separate from broader DFM, as the making of many objects can involve both additive and subtractive steps. Nonetheless, the name "DfAM" has value because it focuses attention on the way that commercializing AM in production roles is not just a matter of figuring out how to switch existing parts from subtractive to additive. Rather, it is about redesigning entire objects (assemblies, subsystems) in view of the newfound availability of advanced AM. That is, it involves redesigning them because their entire earlier design—including even how, why, and at which places they were originally divided into discrete parts—was conceived within the constraints of a world where advanced AM did not yet exist. Thus instead of just modifying an existing part design to allow it to be made additively, full-fledged DfAM involves things like reimagining the overall object such that it has fewer parts or a new set of parts with substantially different boundaries and connections. The object thus may no longer be an assembly at all, or it may be an assembly with many fewer parts. Many examples of such deep-rooted practical impact of DfAM have been emerging in the 2010s, as AM greatly broadens its commercialization. For example, in 2017, GE Aviation revealed that it had used DfAM to create a helicopter engine with 16 parts instead of 900, with great potential impact on reducing the complexity of supply chains.[2] It is this radical rethinking aspect that has led to themes such as that "DfAM requires 'enterprise-level disruption'."[3] In other words, the disruptive innovation that AM can allow can logically extend throughout the enterprise and its supply chain, not just change the layout on a machine shop floor.

DfAM involves both broad themes (which apply to many AM processes) and optimizations specific to a particular AM process. For example, DFM analysis for stereolithography maximizes DfAM for that modality.

  1. ^ Tang, Yunlong (2016). "A survey of the design methods for additive manufacturing to improve functional performance". Rapid Prototyping Journal. 22 (3): 569–590. doi:10.1108/RPJ-01-2015-0011.
  2. ^ Zelinski, Peter (2017-03-31), "GE team secretly printed a helicopter engine, replacing 900 parts with 16", Modern Machine Shop, retrieved 2017-04-09.
  3. ^ Hendrixson, Stephanie (2017-04-24), "How to think about design for additive manufacturing", Modern Machine Shop, retrieved 2017-05-05.