Deviation (statistics)

Plot of standard deviation of a random distribution

In mathematics and statistics, deviation serves as a measure to quantify the disparity between an observed value of a variable and another designated value, frequently the mean of that variable. Deviations with respect to the sample mean and the population mean (or "true value") are called errors and residuals, respectively. The sign of the deviation reports the direction of that difference: the deviation is positive when the observed value exceeds the reference value. The absolute value of the deviation indicates the size or magnitude of the difference. In a given sample, there are as many deviations as sample points. Summary statistics can be derived from a set of deviations, such as the standard deviation and the mean absolute deviation, measures of dispersion, and the mean signed deviation, a measure of bias.[1]

The deviation of each data point is calculated by subtracting the mean of the data set from the individual data point. Mathematically, the deviation d of a data point x in a data set with respect to the mean m is given by the difference:

This calculation represents the "distance" of a data point from the mean and provides information about how much individual values vary from the average. Positive deviations indicate values above the mean, while negative deviations indicate values below the mean.[1]

The sum of squared deviations is a key component in the calculation of variance, another measure of the spread or dispersion of a data set. Variance is calculated by averaging the squared deviations. Deviation is a fundamental concept in understanding the distribution and variability of data points in statistical analysis.[1]

  1. ^ a b c Lee, Dong Kyu; In, Junyong; Lee, Sangseok (2015). "Standard deviation and standard error of the mean". Korean Journal of Anesthesiology. 68 (3): 220. doi:10.4097/kjae.2015.68.3.220. ISSN 2005-6419. PMC 4452664.