Dharmendra Modha

Dharmendra Modha
Born
Dharmendra Modha
NationalityAmerican
EmployerIBM
Websitemodha.org

Dharmendra S. Modha is an Indian American manager and lead researcher of the Cognitive Computing group at IBM Almaden Research Center.[1][2] He is known for his pioneering works in Artificial Intelligence and Mind Simulation.[3] In November 2009, Modha announced at a supercomputing conference that his team had written a program that simulated a cat brain.[4] He is the recipient of multiple honors, including the Gordon Bell Prize, given each year to recognize outstanding achievement in high-performance computing applications.[5] In November 2012, Modha announced on his blog that using 96 Blue Gene/Q racks of the Lawrence Livermore National Laboratory Sequoia supercomputer (1,572,864 processor cores, 1.5 PB memory, 98,304 MPI processes, and 6,291,456 threads), a combined IBM and LBNL team achieved an unprecedented scale of 2.084 billion neurosynaptic cores containing 530 billion neurons and 137 trillion synapses running only 1542× slower than real time.[6] In August 2014 a paper describing the TrueNorth Architecture, "the first-ever production-scale 'neuromorphic' computer chip designed to work more like a mammalian brain than" a processor [7] was published in the journal Science.[8] TrueNorth project culminated in a 64 million neuron system for running deep neural network applications.[9]

  1. ^ "IBM plans 'brain-like' computers". BBC News. 21 November 2008. Retrieved 11 May 2010.
  2. ^ "Center for Consciousness Center, Tucson, Arizona". Retrieved 11 May 2010.
  3. ^ "Point of View with Dharmendra Modha". University of California, San Diego. Retrieved 11 May 2010.
  4. ^ "When Will We Be Able to Build Brains Like Ours?". Scientific American. 27 April 2010. Retrieved 11 May 2010.
  5. ^ "The ACM Gordon Bell Prize". Retrieved 11 May 2010.
  6. ^ "10 to the 14th power" (PDF). Archived from the original (PDF) on 18 April 2016. Retrieved 14 November 2012.
  7. ^ Service, Robert F. (2014). "The brain chip". Science. 345 (6197): 614–616. Bibcode:2014Sci...345..614S. doi:10.1126/science.345.6197.614. PMID 25104367. Retrieved 21 November 2012.
  8. ^ Merolla, Paul A.; Arthur, John V.; Alvarez-Icaza, Rodrigo; Cassidy, Andrew S.; Sawada, Jun; Akopyan, Filipp; Jackson, Bryan L.; Imam, Nabil; Guo, Chen; Nakamura, Yutaka; Brezzo, Bernard; Vo, Ivan; Esser, Steven K.; Appuswamy, Rathinakumar; Taba, Brian; Amir, Arnon; Flickner, Myron D.; Risk, William P.; Manohar, Rajit; Modha, Dharmendra S. (2014). "A million spiking-neuron integrated circuit with a scalable communication network and interface". Science. 345 (6197): 668–673. Bibcode:2014Sci...345..668M. doi:10.1126/science.1254642. PMID 25104385. S2CID 12706847. Retrieved 21 November 2012.
  9. ^ Debole, Michael V.; Taba, Brian; Amir, Arnon; Akopyan, Filipp; Andreopoulos, Alexander; Risk, William P.; Kusnitz, Jeff; Ortega Otero, Carlos; Nayak, Tapan K.; Appuswamy, Rathinakumar; Carlson, Peter J.; Cassidy, Andrew S.; Datta, Pallab; Esser, Steven K.; Garreau, Guillaume J.; Holland, Kevin L.; Lekuch, Scott; Mastro, Michael; McKinstry, Jeff; Di Nolfo, Carmelo; Paulovicks, Brent; Sawada, Jun; Schleupen, Kai; Shaw, Benjamin G.; Klamo, Jennifer L.; Flickner, Myron D.; Arthur, John V.; Modha, Dharmendra S. (2019). "TrueNorth Accelerating From Zero to 64 Million Neurons in 10 Years". Computer. 52 (5): 20–29. doi:10.1109/MC.2019.2903009. S2CID 155108891.