Diffusion maps is a dimensionality reduction or feature extraction algorithm introduced by Coifman and Lafon[1][2][3][4] which computes a family of embeddings of a data set into Euclidean space (often low-dimensional) whose coordinates can be computed from the eigenvectors and eigenvalues of a diffusion operator on the data. The Euclidean distance between points in the embedded space is equal to the "diffusion distance" between probability distributions centered at those points. Different from linear dimensionality reduction methods such as principal component analysis (PCA), diffusion maps are part of the family of nonlinear dimensionality reduction methods which focus on discovering the underlying manifold that the data has been sampled from. By integrating local similarities at different scales, diffusion maps give a global description of the data-set. Compared with other methods, the diffusion map algorithm is robust to noise perturbation and computationally inexpensive.
PNAS1
was invoked but never defined (see the help page).PNAS2
was invoked but never defined (see the help page).DifussionMap
was invoked but never defined (see the help page).Diffusion
was invoked but never defined (see the help page).