Set of regular n-gonal dihedra | |
---|---|
Type | regular polyhedron or spherical tiling |
Faces | 2 n-gons |
Edges | n |
Vertices | n |
Vertex configuration | n.n |
Wythoff symbol | 2 | n 2 |
Schläfli symbol | {n,2} |
Coxeter diagram | |
Symmetry group | Dnh, [2,n], (*22n), order 4n |
Rotation group | Dn, [2,n]+, (22n), order 2n |
Dual polyhedron | regular n-gonal hosohedron |
A dihedron is a type of polyhedron, made of two polygon faces which share the same set of n edges. In three-dimensional Euclidean space, it is degenerate if its faces are flat, while in three-dimensional spherical space, a dihedron with flat faces can be thought of as a lens, an example of which is the fundamental domain of a lens space L(p,q).[1] Dihedra have also been called bihedra,[2] flat polyhedra,[3] or doubly covered polygons.[3]
As a spherical tiling, a dihedron can exist as nondegenerate form, with two n-sided faces covering the sphere, each face being a hemisphere, and vertices on a great circle. It is regular if the vertices are equally spaced.
The dual of an n-gonal dihedron is an n-gonal hosohedron, where n digon faces share two vertices.