Direct reduction (blast furnace)

Direct reduction is the fraction of iron oxide reduction that occurs in a blast furnace due to the presence of coke carbon, while the remainder - indirect reduction - consists mainly of carbon monoxide from coke combustion.

It should also be noted that many non-ferrous oxides are reduced by this type of reaction in a blast furnace. This reaction is therefore essential to the operation of historical processes for the production of non-ferrous metals by non-steel blast furnaces (i.e. blast furnaces dedicated to the production of ferromanganese, ferrosilicon, etc., which have now disappeared).

Direct-reduction steelmaking processes that bring metal oxides into contact with carbon (typically those based on the use of hard coal or charcoal) also exploit this chemical reaction. In fact, at first glance, many of them seem to use only this reaction. Processes that historically competed with blast furnaces, such as the Catalan forge, have been assimilated into this reaction. But modern direct reduction processes are often based on the exclusive use of reducing gases: in this case, their name takes on the exact opposite meaning to that of the chemical reaction.