Djupadal Formation

Djupadal Formation
Stratigraphic range: Latest Pliensbachian- Latest Toarcian
~184–175 Ma A Volcanic neck suggest 176.7 ± 0.5 Ma, Late Toarcian Age
About 10 m south of the shore of the Korsaröd lake exposed layers of the unit are known
TypeFormation
Unit ofCentral Skåne Volcanic Province
Sub-units(in part) Sapropel at Sandåkra
UnderliesCuaternary Sediments
OverliesHöör Sandstone, Brandsberga and Kolleberga erratics and (in part) Sapropel at Sandåkra
ThicknessUp to 60 m (200 ft)[1]
Lithology
PrimaryBasalt Tuff, Veined Gneiss[1]
OtherSandstone, Clay and Conglomerate
Location
Coordinates55°59′N 13°38′E / 55.98°N 13.63°E / 55.98; 13.63
Approximate paleocoordinatesApprox. 35°N
RegionCentral Skåne County
Country Sweden
Extent1,000 km2 (390 sq mi)
Type section
Named forDjupadalsmölla, Ljungbyhed
Named byCarita Augustsson[2]
Year defined2001
Djupadal Formation is located in Sweden
Djupadal Formation
Djupadal Formation (Sweden)

Korsaröd Lagerstätten Location

The Djupadal Formation is a geologic formation in Skåne County, southern Sweden. It is Early Jurassic (probably Pliensbachian-Toarcian, or Late Toarcian) in age. It is part of the Central Skåne Volcanic Province, know by the discovery of basalt tuff layers, including Sandåkra, Korsaröd and Djupadal.

An original analysis of the location of Korsaröd led to a Toarcian-Aalenian age,[3][4][5] but was dismissed in 2016, when a series of Palynogical samples recovered a Late Pliensbachian and probably Lower Toarcian age for the Korsaröd Outcrop.[6] The same year this result was also challenged by an in-depth study of the Lilla Hagstad neck that yield a Late Toarcian Age.[7]

The formation was deposited in the Central Skane region, linked to the late early Jurassic volcanism. The Korsaröd member includes a volcanic-derived Lagerstatten with exceptional fern finds.[8] The data provided by fossilized wood rings showed that the location of Korsaröd hosted a middle-latitude Mediterranean-type biome in the late Early Jurassic, with low rainfall ratio, delayed to seasonal events. Superimposed on this climate were the effects of a local active Strombolian Volcanism and hydrothermal activity.[9]

  1. ^ a b Lidmar-Bergström, Olsson, & Olvmo (1997) p. 98
  2. ^ Augustsson (2001) p. 23
  3. ^ Tralau (1973) p. 128
  4. ^ Cite error: The named reference Sapro was invoked but never defined (see the help page).
  5. ^ Sivhed (1984) p. 26
  6. ^ Vajda, Linderson & McLoughlin (2016) p. 127
  7. ^ Tappe, Smart, Stracke, Romer, Prelević & van den Bogaard (2016) p. 30
  8. ^ Vajda, Linderson & McLoughlin (2016) p. 128
  9. ^ Vajda, Linderson & McLoughlin (2016) p. 141