Donald D. Clayton | |
---|---|
Born | Shenandoah, Iowa, U.S. | March 18, 1935
Died | January 3, 2024 | (aged 88)
Alma mater | California Institute of Technology |
Awards | NASA Exceptional Scientific Achievement Medal, Alexander von Humboldt Award |
Scientific career | |
Fields | Astrophysics |
Institutions | Rice University |
Thesis | Studies of certain nuclear processes in stars (1962) |
Doctoral advisor | William Alfred Fowler |
Doctoral students | Stanford E. Woosley[1] |
Donald Delbert Clayton (March 18, 1935 – January 3, 2024) was an American astrophysicist whose most visible achievement was the prediction from nucleosynthesis theory that supernovae are intensely radioactive. That earned Clayton the NASA Exceptional Scientific Achievement Medal (1992) for “theoretical astrophysics related to the formation of (chemical) elements in the explosions of stars and to the observable products of these explosions”. Supernovae thereafter became the most important stellar events in astronomy owing to their profoundly radioactive nature. Not only did Clayton discover radioactive nucleosynthesis during explosive silicon burning in stars [2][3][4] but he also predicted a new type of astronomy based on it, namely the associated gamma-ray line radiation emitted by matter ejected from supernovae.[5] That paper was selected as one of the fifty most influential papers in astronomy during the twentieth century[6] for the Centennial Volume of the American Astronomical Society. He gathered support from influential astronomers and physicists for a new NASA budget item for a gamma-ray-observatory satellite,[7] achieving successful funding for Compton Gamma Ray Observatory. With his focus on radioactive supernova gas Clayton discovered a new chemical pathway causing carbon dust to condense there by a process that is activated by the radioactivity.[8]
Clayton also authored a novel, The Joshua Factor (1985), a parable of the origin of mankind utilizing the mystery of solar neutrinos; a science autobiography and a memoir; and a history of the origin of each isotope, Handbook of Isotopes in the Cosmos (Cambridge Univ. Press, 2003).
Clayton died on January 3, 2024, at the age of 88.[9]