Dual object

In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V doesn't satisfy the axioms.[1] Often, an object is dualizable only when it satisfies some finiteness or compactness property.[2]

A category in which each object has a dual is called autonomous or rigid. The category of finite-dimensional vector spaces with the standard tensor product is rigid, while the category of all vector spaces is not.

  1. ^ Ponto, Kate; Shulman, Michael (2014). "Traces in symmetric monoidal categories". Expositiones Mathematicae. 32 (3): 248–273. arXiv:1107.6032. Bibcode:2011arXiv1107.6032P. doi:10.1016/j.exmath.2013.12.003.
  2. ^ Becker, James C.; Gottlieb, Daniel Henry (1999). "A history of duality in algebraic topology" (PDF). In James, I.M. (ed.). History of topology. North Holland. pp. 725–745. ISBN 978-0-444-82375-5.