Dual representation

In mathematics, if G is a group and ρ is a linear representation of it on the vector space V, then the dual representation ρ* is defined over the dual vector space V* as follows:[1][2]

ρ*(g) is the transpose of ρ(g−1), that is, ρ*(g) = ρ(g−1)T for all gG.

The dual representation is also known as the contragredient representation.

If g is a Lie algebra and π is a representation of it on the vector space V, then the dual representation π* is defined over the dual vector space V* as follows:[3]

π*(X) = −π(X)T for all Xg.

The motivation for this definition is that Lie algebra representation associated to the dual of a Lie group representation is computed by the above formula. But the definition of the dual of a Lie algebra representation makes sense even if it does not come from a Lie group representation.

In both cases, the dual representation is a representation in the usual sense.

  1. ^ Lecture 1 of Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103.
  2. ^ Hall 2015 Section 4.3.3
  3. ^ Lecture 8 of Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103.