Duffing equation

Duffing oscillator plot, containing phase plot, trajectory, strange attractor, Poincare section, and double well potential plot. The parameters are , , , , and .
A Poincaré section of the forced Duffing equation suggesting chaotic behaviour (, , , , and ).
The strange attractor of the Duffing oscillator, through 4 periods ( time). Coloration shows how the points flow. (, , , , . The animation has time offset so driving force is rather than .)

The Duffing equation (or Duffing oscillator), named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by where the (unknown) function is the displacement at time t, is the first derivative of with respect to time, i.e. velocity, and is the second time-derivative of i.e. acceleration. The numbers and are given constants.

The equation describes the motion of a damped oscillator with a more complex potential than in simple harmonic motion (which corresponds to the case ); in physical terms, it models, for example, an elastic pendulum whose spring's stiffness does not exactly obey Hooke's law.

The Duffing equation is an example of a dynamical system that exhibits chaotic behavior. Moreover, the Duffing system presents in the frequency response the jump resonance phenomenon that is a sort of frequency hysteresis behaviour.