Part of a series on |
Earthquakes |
---|
Earthquake forecasting is a branch of the science of seismology concerned with the probabilistic assessment of general earthquake seismic hazard, including the frequency and magnitude of damaging earthquakes in a given area over years or decades.[1] While forecasting is usually considered to be a type of prediction, earthquake forecasting is often differentiated from earthquake prediction, Earthquake forecasting estimates the likelihood of earthquakes in a specific timeframe and region, while earthquake prediction attempts to pinpoint the exact time, location, and magnitude of an impending quake, which is currently not reliably achievable.Wood & Gutenberg (1935). Kagan (1997b, §2.1) says: "This definition has several defects which contribute to confusion and difficulty in prediction research." In addition to specification of time, location, and magnitude, Allen suggested three other requirements: 4) indication of the author's confidence in the prediction, 5) the chance of an earthquake occurring anyway as a random event, and 6) publication in a form that gives failures the same visibility as successes. Kagan & Knopoff (1987, p. 1563) define prediction (in part) "to be a formal rule where by the available space-time-seismic moment manifold of earthquake occurrence is significantly contracted ...."</ref>[2] Both forecasting and prediction of earthquakes are distinguished from earthquake warning systems, which, upon detection of an earthquake, provide a real-time warning to regions that might be affected.
In the 1970s, scientists were optimistic that a practical method for predicting earthquakes would soon be found, but by the 1990s continuing failure led many to question whether it was even possible.[3] Demonstrably successful predictions of large earthquakes have not occurred, and the few claims of success are controversial.[4] Consequently, many scientific and government resources have been used for probabilistic seismic hazard estimates rather than prediction of individual earthquakes. Such estimates are used to establish building codes, insurance rate structures, awareness and preparedness programs, and public policy related to seismic events.[5] In addition to regional earthquake forecasts, such seismic hazard calculations can take factors such as local geological conditions into account. Anticipated ground motion can then be used to guide building design criteria.[citation needed]