Ecological footprint

The ecological footprint measures human demand on natural capital, i.e. the quantity of nature it takes to support people and their economies.[1][2][3] It tracks human demand on nature through an ecological accounting system. The accounts contrast the biologically productive area people use to satisfy their consumption to the biologically productive area available within a region, nation, or the world (biocapacity). Biocapacity is the productive area that can regenerate what people demand from nature. Therefore, the metric is a measure of human impact on the environment. As Ecological Footprint accounts measure to what extent human activities operate within the means of our planet, they are a central metric for sustainability.

The metric is promoted by the Global Footprint Network which has developed standards[4] to make results comparable. FoDaFo,[5] supported by Global Footprint Network and York University[6] are now providing the national assessments of Footprints and biocapacity.

Footprint and biocapacity can be compared at the individual, regional, national or global scale. Both footprint and demands on biocapacity change every year with number of people, per person consumption, efficiency of production, and productivity of ecosystems. At a global scale, footprint assessments show how big humanity's demand is compared to what Earth can renew. Global Footprint Network estimates that, as of 2022, humanity has been using natural capital 71% faster than Earth can renew it, which they describe as meaning humanity's ecological footprint corresponds to 1.71 planet Earths.[7][8] This overuse is called ecological overshoot.

Ecological footprint analysis is widely used around the world in support of sustainability assessments.[9] It enables people to measure and manage the use of resources throughout the economy and explore the sustainability of individual lifestyles, goods and services, organizations, industry sectors, neighborhoods, cities, regions, and nations.[1]

  1. ^ a b "Ecological Footprint: Overview". footprintnetwork.org. Global Footprint Network. Retrieved 16 April 2017.
  2. ^ Wackernagel, Mathis; Lin, David; Evans, Mikel; Hanscom, Laurel; Raven, Peter (2019). "Defying the Footprint Oracle: Implications of Country Resource Trends". Sustainability. 11 (7): 2164. doi:10.3390/su11072164.
  3. ^ Yasin, Iftikhar; Ahmad, Nawaz; Chaudhary, M. Aslam (2019-07-22). "Catechizing the Environmental-Impression of Urbanization, Financial Development, and Political Institutions: A Circumstance of Ecological Footprints in 110 Developed and Less-Developed Countries". Social Indicators Research. 147 (2): 621–649. doi:10.1007/s11205-019-02163-3. ISSN 0303-8300. S2CID 199855869.
  4. ^ Global Footprint Network. "Ecological Footprint Standards 2009". www.footprintstandards.org. Global Footprint Network. Retrieved 11 February 2024.
  5. ^ FoDaFo. "Footprint Data Foundation - FoDaFo". www.fodafo.org. FoDaFo. Retrieved 11 February 2024.
  6. ^ York University. "Ecological Footprint Initiative". footprint.info.yorku.ca. York University, Toronto. Retrieved 11 February 2024.
  7. ^ "Home page". footprintnetwork.org. Global Footprint Network. Retrieved 2023-02-10.
  8. ^ Wackernagel, Mathis; Beyers, Bert (2019). Ecological footprint : managing our biocapacity budget. Katharina Rout (translation support). Gabriola Island, BC, Canada. p. 288. ISBN 978-1-55092-704-7. OCLC 1098180309.{{cite book}}: CS1 maint: location missing publisher (link)
  9. ^ Lyndhurst, Brook (June 2003). "London's Ecological Footprint A review" (PDF). Mayor of London. Greater London Authority (commissioned by GLA Economics).