In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μe) is −9.2847646917(29)×10−24 J⋅T−1.[1] In units of the Bohr magneton (μB), it is −1.00115965218059(13) μB,[2] a value that was measured with a relative accuracy of 1.3×10−13.