Energy density

Energy density
SI unitJ/m3
Other units
J/L, W⋅h/L
In SI base unitsm−1⋅kg⋅s−2
Derivations from
other quantities
U = E/V
Dimension

In physics, energy density is the quotient between the amount of energy stored in a given system or contained in a given region of space and the volume of the system or region considered. Often only the useful or extractable energy is measured. It is sometimes confused with stored energy per unit mass, which is called specific energy or gravimetric energy density.

There are different types of energy stored, corresponding to a particular type of reaction. In order of the typical magnitude of the energy stored, examples of reactions are: nuclear, chemical (including electrochemical), electrical, pressure, material deformation or in electromagnetic fields. Nuclear reactions take place in stars and nuclear power plants, both of which derive energy from the binding energy of nuclei. Chemical reactions are used by organisms to derive energy from food and by automobiles from the combustion of gasoline. Liquid hydrocarbons (fuels such as gasoline, diesel and kerosene) are today the densest way known to economically store and transport chemical energy at a large scale (1 kg of diesel fuel burns with the oxygen contained in ≈15 kg of air). Burning local biomass fuels supplies household energy needs (cooking fires, oil lamps, etc.) worldwide. Electrochemical reactions are used by devices such as laptop computers and mobile phones to release energy from batteries.

Energy per unit volume has the same physical units as pressure, and in many situations is synonymous. For example, the energy density of a magnetic field may be expressed as and behaves like a physical pressure. The energy required to compress a gas to a certain volume may be determined by multiplying the difference between the gas pressure and the external pressure by the change in volume. A pressure gradient describes the potential to perform work on the surroundings by converting internal energy to work until equilibrium is reached.

In cosmological and other contexts in general relativity, the energy densities considered relate to the elements of the stress-energy tensor and therefore do include the rest mass energy as well as energy densities associated with pressure.