Epithelial sodium channel | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||
Symbol | ASC | ||||||||||
Pfam | PF00858 | ||||||||||
InterPro | IPR001873 | ||||||||||
PROSITE | PDOC00926 | ||||||||||
SCOP2 | 6BQN / SCOPe / SUPFAM | ||||||||||
TCDB | 1.A.6 | ||||||||||
OPM superfamily | 181 | ||||||||||
OPM protein | 4fz1 | ||||||||||
|
The epithelial sodium channel (ENaC), (also known as amiloride-sensitive sodium channel) is a membrane-bound ion channel that is selectively permeable to sodium ions (Na+). It is assembled as a heterotrimer composed of three homologous subunits α or δ, β, and γ,[2] These subunits are encoded by four genes: SCNN1A, SCNN1B, SCNN1G, and SCNN1D. The ENaC is involved primarily in the reabsorption of sodium ions at the collecting ducts of the kidney's nephrons. In addition to being implicated in diseases where fluid balance across epithelial membranes is perturbed, including pulmonary edema, cystic fibrosis, COPD and COVID-19, proteolyzed forms of ENaC function as the human salt taste receptor.[3]
The apical membranes of many tight epithelia contain sodium channels that are characterized primarily by their high affinity for the diuretic blocker amiloride.[2][4][5][6] These channels mediate the first step of active sodium reabsorption essential for the maintenance of body salt and water homeostasis.[4] In vertebrates, the channels control reabsorption of sodium in kidney, colon, lung and sweat glands; they also play a role in taste perception.
The epithelial sodium channels are structurally and probably evolutionary related to P2X purinoreceptors, pain receptors that activate when they detect ATP.