Equiangular polygon

Example equiangular polygons
Direct Indirect Skew

A rectangle, <4>, is a convex direct equiangular polygon, containing four 90° internal angles.

A concave indirect equiangular polygon, <6-2>, like this hexagon, counterclockwise, has five left turns and one right turn, like this tetromino.

A skew polygon has equal angles off a plane, like this skew octagon alternating red and blue edges on a cube.
Direct Indirect Counter-turned

A multi-turning equiangular polygon can be direct, like this octagon, <8/2>, has 8 90° turns, totaling 720°.

A concave indirect equiangular polygon, <5-2>, counterclockwise has 4 left turns and one right turn.
(-1.2.4.3.2)60°

An indirect equiangular hexagon, <6-6>90° with 3 left turns, 3 right turns, totaling 0°.

In Euclidean geometry, an equiangular polygon is a polygon whose vertex angles are equal. If the lengths of the sides are also equal (that is, if it is also equilateral) then it is a regular polygon. Isogonal polygons are equiangular polygons which alternate two edge lengths.

For clarity, a planar equiangular polygon can be called direct or indirect. A direct equiangular polygon has all angles turning in the same direction in a plane and can include multiple turns. Convex equiangular polygons are always direct. An indirect equiangular polygon can include angles turning right or left in any combination. A skew equiangular polygon may be isogonal, but can't be considered direct since it is nonplanar.

A spirolateral nθ is a special case of an equiangular polygon with a set of n integer edge lengths repeating sequence until returning to the start, with vertex internal angles θ.