Equilateral dimension

Regular simplexes of dimensions 0 through 3. The vertices of these shapes give the largest possible equally-spaced point sets for the Euclidean distances in those dimensions

In mathematics, the equilateral dimension of a metric space is the maximum size of any subset of the space whose points are all at equal distances to each other.[1] Equilateral dimension has also been called "metric dimension", but the term "metric dimension" also has many other inequivalent usages.[1] The equilateral dimension of -dimensional Euclidean space is , achieved by the vertices of a regular simplex, and the equilateral dimension of a -dimensional vector space with the Chebyshev distance ( norm) is , achieved by the vertices of a hypercube. However, the equilateral dimension of a space with the Manhattan distance ( norm) is not known. Kusner's conjecture, named after Robert B. Kusner, states that it is exactly , achieved by the vertices of a cross polytope.[2]