In computational complexity theory, the exponential hierarchy is a hierarchy of complexity classes that is an exponential time analogue of the polynomial hierarchy. As elsewhere in complexity theory, “exponential” is used in two different meanings (linear exponential bounds for a constant c, and full exponential bounds ), leading to two versions of the exponential hierarchy.[1][2] This hierarchy is sometimes also referred to as the weak exponential hierarchy, to differentiate it from the strong exponential hierarchy.[2][3]
- ^ Sarah Mocas, Separating classes in the exponential-time hierarchy from classes in PH, Theoretical Computer Science 158 (1996), no. 1–2, pp. 221–231.
- ^ a b Anuj Dawar, Georg Gottlob, Lauri Hella, Capturing relativized complexity classes without order, Mathematical Logic Quarterly 44 (1998), no. 1, pp. 109–122.
- ^ Hemachandra, Lane A. (1989). "The strong exponential hierarchy collapses". Journal of Computer and System Sciences. 39 (3): 299–322. doi:10.1016/0022-0000(89)90025-1.