Exposure science

Exposure science is the study of the contact between humans (and other organisms) and harmful agents within their environment – whether it be chemical, physical, biological, behavioural or mental stressors – with the aim of identifying the causes and preventions of the adverse health effects they result in.[1][2] This can include exposure within the home, workplace, outdoors or any other environment an individual may encounter.[3] The term 'exposure' is the umbrella term for many different types, ranging from ultraviolet exposure,[4] exposure to the chemicals in the food we eat,[5] to exposure to long working hours being the occupational factor most attributable to the burden of disease.[6]

The need for the field arises from the expansive range of exposures which have resulted in negative health outcomes for humans and other organisms, and mainly focus on the relationship between external exposure, internal exposure and dose.[2] By tightly integrating the fields of epidemiology, toxicology, biochemistry, environmental science and risk assessment, holistic comprehension of an exposure is achieved to protect human and ecosystem health on an individual, community and global levels.[1] Though the history of exposure science had an initial slow start, developments have significantly accelerated in the past three decades,[7] including the beginnings of the formation of the "exposome".[8] However, there is still much unknown and research in the field is only expanding to cover the increasing amount of identified exposures.

  1. ^ a b Council, National Research (2012). Exposure Science in the 21st Century: A Vision and a Strategy. doi:10.17226/13507. ISBN 978-0-309-26468-6. PMID 24901193.
  2. ^ a b R., Lioy, Paul J. Smith, Kirk (2013-01-31). "A Discussion of Exposure Science in the 21st Century: A Vision and a Strategy". Environmental Health Perspectives. 121 (4). National Institute of Environmental Health Sciences: 405–409. doi:10.1289/ehp.1206170. OCLC 841828808. PMC 3620766. PMID 23380895.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Dionisio, Kathie L.; Frame, Alicia M.; Goldsmith, Michael-Rock; Wambaugh, John F.; Liddell, Alan; Cathey, Tommy; Smith, Doris; Vail, James; Ernstoff, Alexi S.; Fantke, Peter; Jolliet, Olivier (2015). "Exploring consumer exposure pathways and patterns of use for chemicals in the environment". Toxicology Reports. 2: 228–237. doi:10.1016/j.toxrep.2014.12.009. ISSN 2214-7500. PMC 5598258. PMID 28962356.
  4. ^ Lucas, Robyn M (2011). "An Epidemiological Perspective of Ultraviolet Exposure—Public Health Concerns". Eye & Contact Lens: Science & Clinical Practice. 37 (4): 168–175. doi:10.1097/icl.0b013e31821cb0cf. ISSN 1542-2321. PMID 21670693.
  5. ^ Landecker, Hannah (2011). "Food as exposure: Nutritional epigenetics and the new metabolism". BioSocieties. 6 (2): 167–194. doi:10.1057/biosoc.2011.1. ISSN 1745-8552. PMC 3500842. PMID 23227106.
  6. ^ Pega, Frank; Náfrádi, Bálint; Momen, Natalie C.; Ujita, Yuka; Streicher, Kai N.; Prüss-Üstün, Annette M.; Descatha, Alexis; Driscoll, Tim; Fischer, Frida M.; Godderis, Lode; Kiiver, Hannah M. (2021). "Global, regional, and national burdens of ischemic heart disease and stroke attributable to exposure to long working hours for 194 countries, 2000–2016: A systematic analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury". Environment International. 154: 106595. doi:10.1016/j.envint.2021.106595. ISSN 0160-4120. PMC 8204267. PMID 34011457. S2CID 234793890.
  7. ^ Cite error: The named reference :4 was invoked but never defined (see the help page).
  8. ^ Cite error: The named reference :5 was invoked but never defined (see the help page).