Electronic components have a wide range of failure modes. These can be classified in various ways, such as by time or cause. Failures can be caused by excess temperature, excess current or voltage, ionizing radiation, mechanical shock, stress or impact, and many other causes. In semiconductor devices, problems in the device package may cause failures due to contamination, mechanical stress of the device, or open or short circuits.
Failures most commonly occur near the beginning and near the ending of the lifetime of the parts, resulting in the bathtub curve graph of failure rates. Burn-in procedures are used to detect early failures. In semiconductor devices, parasitic structures, irrelevant for normal operation, become important in the context of failures; they can be both a source and protection against failure.
Applications such as aerospace systems, life support systems, telecommunications, railway signals, and computers use great numbers of individual electronic components. Analysis of the statistical properties of failures can give guidance in designs to establish a given level of reliability. For example, the power-handling ability of a resistor may be greatly derated when applied in high-altitude aircraft to obtain adequate service life.
A sudden fail-open fault can cause multiple secondary failures if it is fast and the circuit contains an inductance; this causes large voltage spikes, which may exceed 500 volts. A broken metallisation on a chip may thus cause secondary overvoltage damage.[1] Thermal runaway can cause sudden failures including melting, fire or explosions.