Fermi acceleration

Fermi acceleration,[1][2] sometimes referred to as diffusive shock acceleration (a subclass of Fermi acceleration[3]), is the acceleration that charged particles undergo when being repeatedly reflected, usually by a magnetic mirror (see also Centrifugal mechanism of acceleration). It receives its name from physicist Enrico Fermi who first proposed the mechanism. This is thought to be the primary mechanism by which particles gain non-thermal energies in astrophysical shock waves. It plays a very important role in many astrophysical models, mainly of shocks including solar flares and supernova remnants.[4]

There are two types of Fermi acceleration: first-order Fermi acceleration (in shocks) and second-order Fermi acceleration (in the environment of moving magnetized gas clouds). In both cases the environment has to be collisionless in order for the mechanism to be effective. This is because Fermi acceleration only applies to particles with energies exceeding the thermal energies, and frequent collisions with surrounding particles will cause severe energy loss and as a result no acceleration will occur.

  1. ^ Krymskii G.F. (1977) Dokl. Akad. Nauk SSSR 234, 1306
  2. ^ Bell, Anthony R. (1978). "The acceleration of cosmic rays in shock fronts - I". Monthly Notices of the Royal Astronomical Society. 182 (2): 147–156. Bibcode:1978MNRAS.182..147B. doi:10.1093/mnras/182.2.147. ISSN 0035-8711.
  3. ^ On the Origin of the Cosmic Radiation, E. Fermi, Physical Review 75, pp. 1169-1174, 1949
  4. ^ Longair, Malcolm S. (1994). High Energy Astrophysics, Volume 2. Cambridge University Press. ISBN 978-0-521-43584-0.