Ferrocene

Ferrocene
Names
Preferred IUPAC name
Ferrocene[1]
Other names
  • Dicyclopentadienyl iron
  • Bis(η5-cyclopentadienyl)iron
  • Iron(II) cyclopentadienide
Identifiers
ChEBI
ChemSpider
ECHA InfoCard 100.002.764 Edit this at Wikidata
UNII
  • InChI=1S/2C5H5.Fe/c2*1-2-4-5-3-1;/h2*1-5H;/q2*-1;+2 checkY
    Key: KTWOOEGAPBSYNW-UHFFFAOYSA-N checkY
  • InChI=1/2C5H5.Fe/c2*1-2-4-5-3-1;/h2*1-5H;/q2*-1;+2
    Key: KTWOOEGAPBSYNW-UHFFFAOYAZ
  • [CH-]1C=CC=C1.[CH-]1C=CC=C1.[Fe+2]
Properties
C10H10Fe
Molar mass 186.04 g/mol
Appearance light orange powder
Odor camphor-like
Density 1.107 g/cm3 (0 °C)
1.490 g/cm3 (20 °C)[2]
Melting point 172.5 °C (342.5 °F; 445.6 K)[4]
Boiling point 249 °C (480 °F; 522 K)
Insoluble in water, soluble in most organic solvents
log P 2.04050[3]
Structure
D5h (eclipsed)
D5d (staggered)
Sandwich structure with iron centre
Hazards
NFPA 704 (fire diamond)
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 15 mg/m3 (total) TWA 5 mg/m3 (resp)[5]
REL (Recommended)
TWA 10 mg/m3 (total) TWA 5 mg/m3 (resp)[5]
IDLH (Immediate danger)
N.D.[5]
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Ferrocene is an organometallic compound with the formula Fe(C5H5)2. The molecule is a complex consisting of two cyclopentadienyl rings sandwiching a central iron atom. It is an orange solid with a camphor-like odor that sublimes above room temperature, and is soluble in most organic solvents. It is remarkable for its stability: it is unaffected by air, water, strong bases, and can be heated to 400 °C without decomposition. In oxidizing conditions it can reversibly react with strong acids to form the ferrocenium cation Fe(C5H5)+2.[7] Ferrocene and the ferrocenium cation are sometimes abbreviated as Fc and Fc+ respectively.

The first reported synthesis of ferrocene was in 1951. Its unusual stability puzzled chemists, and required the development of new theory to explain its formation and bonding. The discovery of ferrocene and its many analogues, known as metallocenes, sparked excitement and led to a rapid growth in the discipline of organometallic chemistry. Geoffrey Wilkinson and Ernst Otto Fischer, both of whom worked on elucidating the structure of ferrocene, later shared the 1973 Nobel Prize in Chemistry for their work on organometallic sandwich compounds. Ferrocene itself has no large-scale applications, but has found more niche uses in catalysis, as a fuel additive, and as a tool in undergraduate education.

  1. ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 1041. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
  2. ^ "Ferrocene (102-54-5)". ChemicalBook. Retrieved 3 February 2010.
  3. ^ "FERROCENE Material safety data sheet". ChemSrc.
  4. ^ Lide DR, ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. p. 3.258. ISBN 0-8493-0486-5.
  5. ^ a b c NIOSH Pocket Guide to Chemical Hazards. "#0205". National Institute for Occupational Safety and Health (NIOSH).
  6. ^ "Ferrocene MSDS". ScienceLab. Archived from the original on 2015-12-12. Retrieved 2015-11-25.
  7. ^ Cite error: The named reference werner2012 was invoked but never defined (see the help page).