| |||
| |||
Names | |||
---|---|---|---|
Preferred IUPAC name
Ferrocene[1] | |||
Other names
| |||
Identifiers | |||
ChEBI | |||
ChemSpider | |||
ECHA InfoCard | 100.002.764 | ||
PubChem CID
|
|||
UNII | |||
CompTox Dashboard (EPA)
|
|||
| |||
| |||
Properties | |||
C10H10Fe | |||
Molar mass | 186.04 g/mol | ||
Appearance | light orange powder | ||
Odor | camphor-like | ||
Density | 1.107 g/cm3 (0 °C) 1.490 g/cm3 (20 °C)[2] | ||
Melting point | 172.5 °C (342.5 °F; 445.6 K)[4] | ||
Boiling point | 249 °C (480 °F; 522 K) | ||
Insoluble in water, soluble in most organic solvents | |||
log P | 2.04050[3] | ||
Structure | |||
D5h (eclipsed) D5d (staggered) | |||
Sandwich structure with iron centre | |||
Hazards | |||
NFPA 704 (fire diamond) | |||
NIOSH (US health exposure limits): | |||
PEL (Permissible)
|
TWA 15 mg/m3 (total) TWA 5 mg/m3 (resp)[5] | ||
REL (Recommended)
|
TWA 10 mg/m3 (total) TWA 5 mg/m3 (resp)[5] | ||
IDLH (Immediate danger)
|
N.D.[5] | ||
Related compounds | |||
Related compounds
|
|||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Ferrocene is an organometallic compound with the formula Fe(C5H5)2. The molecule is a complex consisting of two cyclopentadienyl rings sandwiching a central iron atom. It is an orange solid with a camphor-like odor that sublimes above room temperature, and is soluble in most organic solvents. It is remarkable for its stability: it is unaffected by air, water, strong bases, and can be heated to 400 °C without decomposition. In oxidizing conditions it can reversibly react with strong acids to form the ferrocenium cation Fe(C5H5)+2.[7] Ferrocene and the ferrocenium cation are sometimes abbreviated as Fc and Fc+ respectively.
The first reported synthesis of ferrocene was in 1951. Its unusual stability puzzled chemists, and required the development of new theory to explain its formation and bonding. The discovery of ferrocene and its many analogues, known as metallocenes, sparked excitement and led to a rapid growth in the discipline of organometallic chemistry. Geoffrey Wilkinson and Ernst Otto Fischer, both of whom worked on elucidating the structure of ferrocene, later shared the 1973 Nobel Prize in Chemistry for their work on organometallic sandwich compounds. Ferrocene itself has no large-scale applications, but has found more niche uses in catalysis, as a fuel additive, and as a tool in undergraduate education.
werner2012
was invoked but never defined (see the help page).