Ferropericlase

Ferropericlase or magnesiowüstite is a magnesium/iron oxide with the chemical formula (Mg,Fe)O that is interpreted to be one of the main constituents of the Earth's lower mantle together with the silicate perovskite ((Mg,Fe)SiO3), a magnesium/iron silicate with a perovskite structure. Ferropericlase has been found as inclusions in a few natural diamonds. An unusually high iron content in one suite of diamonds has been associated with an origin from the lowermost mantle.[1] Discrete ultralow-velocity zones in the deepest parts of the mantle, near the Earth's core, are thought to be blobs of ferropericlase, as seismic waves are significantly slowed as they pass through them, and ferropericlase is known to have this effect at the high pressures and temperatures found deep within the Earth's mantle.[2] In May 2018, ferropericlase was shown to be anisotropic in specific ways in the high pressures of the lower mantle, and these anisotropies may help seismologists and geologists to confirm whether those ultra-low velocity zones are indeed ferropericlase, by passing seismic waves through them from various different directions and observing the exact amount of change in the velocity of those waves.[3]

  1. ^ "Kopylova, M.G. 2006. Ferropericlase from the lowermost mantle and its geodynamic significance". Archived from the original on 2016-03-03. Retrieved 2008-03-18.
  2. ^ "Strange Blobs Beneath Earth Could Be Remnants of an Ancient Magma Ocean". Space.com. Retrieved 2018-10-01.
  3. ^ Finkelstein, Gregory J.; Jackson, Jennifer M.; Said, Ayman; Alatas, Ahmet; Leu, Bogdan M.; Sturhahn, Wolfgang; Toellner, Thomas S. (18 May 2018). "Strongly Anisotropic Magnesiowüstite in Earth's Lower Mantle" (PDF). Journal of Geophysical Research: Solid Earth. 123 (6): 4740–4750. Bibcode:2018JGRB..123.4740F. doi:10.1029/2017jb015349. ISSN 2169-9313.