In population genetics, fixation is the change in a gene pool from a situation where there exists at least two variants of a particular gene (allele) in a given population to a situation where only one of the alleles remains. That is, the allele becomes fixed. [1] In the absence of mutation or heterozygote advantage, any allele must eventually either be lost completely from the population, or fixed, i.e. permanently established at 100% frequency in the population.[2] Whether a gene will ultimately be lost or fixed is dependent on selection coefficients and chance fluctuations in allelic proportions.[3] Fixation can refer to a gene in general or particular nucleotide position in the DNA chain (locus).
In the process of substitution, a previously non-existent allele arises by mutation and undergoes fixation by spreading through the population by random genetic drift or positive selection. Once the frequency of the allele is at 100%, i.e. being the only gene variant present in any member, it is said to be "fixed" in the population.[1]
Similarly, genetic differences between taxa are said to have been fixed in each species.