Floor and ceiling functions

Floor and ceiling functions
Floor function
Ceiling function

In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted x or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted x or ceil(x).[1]

For example, for floor: ⌊2.4⌋ = 2, ⌊−2.4⌋ = −3, and for ceiling: ⌈2.4⌉ = 3, and ⌈−2.4⌉ = −2.

The floor of x is also called the integral part, integer part, greatest integer, or entier of x, and was historically denoted [x] (among other notations).[2] However, the same term, integer part, is also used for truncation towards zero, which differs from the floor function for negative numbers.

For n an integer, n⌋ = ⌈n⌉ = n.

Although floor(x+1) and ceil(x) produce graphs that appear exactly alike, they are not the same when the value of x is an exact integer. For example, when x=2.0001; ⌊2.0001+1⌋ = ⌈2.0001⌉ = 3. However, if x=2, then ⌊2+1⌋ = 3, while ⌈2⌉ = 2.

Examples
x Floor x Ceiling x Fractional part {x}
2 2 2 0
2.0001 2 3 0.0001
2.4 2 3 0.4
2.9 2 3 0.9
2.999 2 3 0.999
−2.7 −3 −2 0.3
−2 −2 −2 0
  1. ^ Graham, Knuth, & Patashnik, Ch. 3.1
  2. ^ 1) Luke Heaton, A Brief History of Mathematical Thought, 2015, ISBN 1472117158 (n.p.)
    2) Albert A. Blank et al., Calculus: Differential Calculus, 1968, p. 259
    3) John W. Warris, Horst Stocker, Handbook of mathematics and computational science, 1998, ISBN 0387947469, p. 151