Fluorescence in the life sciences

Distribution of fluorescent proteins in animals.
The hippocampus of a mouse imaged via fluorescence microscopy.
Biofluorescent emission spectra from amphibians
Example uses of fluorescent proteins for imaging in the life sciences

Fluorescence is used in the life sciences generally as a non-destructive way of tracking or analysing biological molecules. Some proteins or small molecules in cells are naturally fluorescent, which is called intrinsic fluorescence or autofluorescence (such as NADH, tryptophan or endogenous chlorophyll, phycoerythrin or green fluorescent protein). The intrinsic DNA fluorescence is very weak[1].Alternatively, specific or general proteins, nucleic acids, lipids or small molecules can be "labelled" with an extrinsic fluorophore, a fluorescent dye which can be a small molecule, protein or quantum dot. Several techniques exist to exploit additional properties of fluorophores, such as fluorescence resonance energy transfer, where the energy is passed non-radiatively to a particular neighbouring dye, allowing proximity or protein activation to be detected; another is the change in properties, such as intensity, of certain dyes depending on their environment allowing their use in structural studies.[2][3][4]

  1. ^ Gustavsson, Thomas; Markovitsi, Dimitra (2021-03-22). "Fundamentals of the Intrinsic DNA Fluorescence". Accounts of Chemical Research. 54 (5): 1226–1235. doi:10.1021/acs.accounts.0c00603. ISSN 1520-4898. PMID 33587613.
  2. ^ Joseph R. Lakowicz (2006). Principles of fluorescence spectroscopy. Springer. pp. 26–. ISBN 978-0-387-31278-1. Retrieved 25 June 2011.
  3. ^ Fluorescence Fundamentals. Invitrogen.com. Retrieved on 2011-06-25.
  4. ^ Juan Carlos Stockert, Alfonso Blázquez-Castro (2017). Fluorescence Microscopy in Life Sciences. Bentham Science Publishers. ISBN 978-1-68108-519-7. Retrieved 17 December 2017.