Frucht graph

Frucht graph
The Frucht graph
Named afterRobert Frucht
Vertices12
Edges18
Radius3
Diameter4
Girth3
Automorphisms1 ({id})
Chromatic number3
Chromatic index3
PropertiesCubic
Halin
Pancyclic
Table of graphs and parameters

In the mathematical field of graph theory, the Frucht graph is a cubic graph with 12 vertices, 18 edges, and no nontrivial symmetries.[1] It was first described by Robert Frucht in 1939.[2]

The Frucht graph is a pancyclic, Halin graph with chromatic number 3, chromatic index 3, radius 3, and diameter 4. Like every Halin graph, the Frucht graph is polyhedral (planar and 3-vertex-connected) and Hamiltonian, with girth 3. Its independence number is 5.

The Frucht graph can be constructed from the LCF notation: [−5,−2,−4,2,5,−2,2,5,−2,−5,4,2].

  1. ^ Weisstein, Eric W., "Frucht Graph", MathWorld
  2. ^ Cite error: The named reference f38 was invoked but never defined (see the help page).