Fundamental matrix (computer vision)

In computer vision, the fundamental matrix is a 3×3 matrix which relates corresponding points in stereo images. In epipolar geometry, with homogeneous image coordinates, x and x′, of corresponding points in a stereo image pair, Fx describes a line (an epipolar line) on which the corresponding point x′ on the other image must lie. That means, for all pairs of corresponding points holds

Being of rank two and determined only up to scale, the fundamental matrix can be estimated given at least seven point correspondences. Its seven parameters represent the only geometric information about cameras that can be obtained through point correspondences alone.

The term "fundamental matrix" was coined by QT Luong in his influential PhD thesis. It is sometimes also referred to as the "bifocal tensor". As a tensor it is a two-point tensor in that it is a bilinear form relating points in distinct coordinate systems.

The above relation which defines the fundamental matrix was published in 1992 by both Olivier Faugeras and Richard Hartley. Although H. Christopher Longuet-Higgins' essential matrix satisfies a similar relationship, the essential matrix is a metric object pertaining to calibrated cameras, while the fundamental matrix describes the correspondence in more general and fundamental terms of projective geometry. This is captured mathematically by the relationship between a fundamental matrix and its corresponding essential matrix , which is

and being the intrinsic calibration matrices of the two images involved.