Gaia hypothesis

The study of planetary habitability is partly based upon extrapolation from knowledge of the Earth's conditions, as the Earth is the only planet currently known to harbour life (The Blue Marble, 1972 Apollo 17 photograph).

The Gaia hypothesis (/ˈɡ.ə/), also known as the Gaia theory, Gaia paradigm, or the Gaia principle, proposes that living organisms interact with their inorganic surroundings on Earth to form a synergistic and self-regulating complex system that helps to maintain and perpetuate the conditions for life on the planet.

The Gaia hypothesis was formulated by the chemist James Lovelock[1] and co-developed by the microbiologist Lynn Margulis in the 1970s.[2] Following the suggestion by his neighbour, novelist William Golding, Lovelock named the hypothesis after Gaia, the primordial deity who personified the Earth in Greek mythology. In 2006, the Geological Society of London awarded Lovelock the Wollaston Medal in part for his work on the Gaia hypothesis.[3]

Topics related to the hypothesis include how the biosphere and the evolution of organisms affect the stability of global temperature, salinity of seawater, atmospheric oxygen levels, the maintenance of a hydrosphere of liquid water and other environmental variables that affect the habitability of Earth.

The Gaia hypothesis was initially criticized for being teleological and against the principles of natural selection, but later refinements aligned the Gaia hypothesis with ideas from fields such as Earth system science, biogeochemistry and systems ecology.[4][5][6] Even so, the Gaia hypothesis continues to attract criticism, and today many scientists consider it to be only weakly supported by, or at odds with, the available evidence.[7][8][9][10]

  1. ^ Cite error: The named reference J1972 was invoked but never defined (see the help page).
  2. ^ Lovelock, J. E.; Margulis, L. (1974). "Atmospheric homeostasis by and for the biosphere: the gaia hypothesis". Tellus A. 26 (1–2): 2–10. Bibcode:1974Tell...26....2L. doi:10.3402/tellusa.v26i1-2.9731. S2CID 129803613.
  3. ^ "Wollaston Award Lovelock". Retrieved 19 October 2015.
  4. ^ Turney 2003.
  5. ^ Schwartzman, David (2002). Life, Temperature, and the Earth: The Self-Organizing Biosphere. Columbia University Press. ISBN 978-0-231-10213-1.
  6. ^ Gribbin, John (1990), "Hothouse earth: The greenhouse effect and Gaia" (Weidenfeld & Nicolson)
  7. ^ Kirchner, James W. (2002), "Toward a future for Gaia theory", Climatic Change, 52 (4): 391–408, doi:10.1023/a:1014237331082, S2CID 15776141
  8. ^ Volk, Tyler (2002), "The Gaia hypothesis: fact, theory, and wishful thinking", Climatic Change, 52 (4): 423–430, doi:10.1023/a:1014218227825, S2CID 32856540
  9. ^ Beerling, David (2007). The Emerald Planet: How plants changed Earth's history. Oxford: Oxford University Press. ISBN 978-0-19-280602-4.
  10. ^ Tyrrell 2013.