Gas spring

Simplified constant-force pneumatic gas spring with sectional view:
1. Piston rod
2. Head cap
3. Guide bushing
4. Seal
5. Cylinder
6. Piston
7. Flow-restriction orifice

A gas spring, also known as a gas strut or gas damper, is a type of spring that, unlike a typical mechanical spring that relies on elastic deformation, uses compressed gas contained within an enclosed cylinder.[1] They rely on a sliding piston to pneumatically store potential energy and withstand external force applied parallel to the direction of the piston shaft (loosely analogous similarly to a bicycle pump without a gas outlet).

Gas springs are used in automobiles to support hatches, hoods, and covers.[2] They are also used in furniture and doors, as well as in medical beds.[2] They are used industrially in machine tool presses.[2] Fast-acting gas springs are used in aerospace design and weapons applications, and large, extended gas springs are used in passive heave compensators, which stabilize drilling operations against waves.[2]

Gas springs are usually implemented in one of two ways. A pneumatic suspension gas spring directly compresses a chamber of air with the piston. A hydro-pneumatic suspension gas spring instead compresses a chamber of oil linked to an accumulator in which the pressure of the oil compresses the gas.[3] Nitrogen is a common gas in gas springs because it is inert and nonflammable.[2]

  1. ^ "Understanding the Basics of Gas Spring Application". Tech Briefs. 2019-04-01. Retrieved 2024-03-31.
  2. ^ a b c d e Eitel, Lisa (7 August 2017). "What are gas springs? A technical primer". Motion Control Tips. Retrieved 2024-07-22.
  3. ^ Savaresi, Sergio M.; Poussot-Vassal, Charles; Spelta, Cristiano; Sename, Olivier; Dugard, Luc (2010-08-13). "Semi-Active Suspension Technologies and Models". Semi-Active Suspension Control Design for Vehicles. Elsevier. ISBN 978-0-08-096679-3.