Gemini Observatory

Gemini Observatory
Gemini NorthGemini South
Gemini North in Hawaii and Gemini South in Chile
Alternative namesInternational Gemini Observatory Edit this at Wikidata
Named afterGemini Edit this on Wikidata
OrganizationGemini Consortium (NSF-US, NRC-Canada, CONICYT-Chile, MCTI-Brazil, MCTIP-Argentina, KASI-Korea) and AURA
LocationMauna Kea Access Rd, Hawaii, U.S.
Cerro Pachón, Chile
Coordinates19°49′26″N 155°28′11″W / 19.82396°N 155.46984°W / 19.82396; -155.46984 (Gemini North Observatory)
30°14′27″S 70°44′12″W / 30.24073°S 70.73659°W / -30.24073; -70.73659 (Gemini South Observatory)
Altitude4,213 m (13,822 ft)
2,722 m (8,930 ft)
Established2000
Websitewww.gemini.edu
Telescopes
Gemini North8.1 m Cassegrain reflector
Gemini South8.1 m Cassegrain reflector
  Related media on Commons

The Gemini Observatory comprises two 8.1-metre (26.6 ft) telescopes, Gemini North and Gemini South, situated in Hawaii and Chile, respectively. These twin telescopes offer extensive coverage of the northern and southern skies and rank among the most advanced optical/infrared telescopes available to astronomers. (See List of largest optical reflecting telescopes).

The observatory is owned and operated by the National Science Foundation (NSF) of the United States, the National Research Council of Canada, CONICYT of Chile, MCTI of Brazil, MCTIP of Argentina, and Korea Astronomy and Space Science Institute (KASI) of Republic of Korea. The NSF is the primary funding contributor, providing about 70% of the required resources. The Association of Universities for Research in Astronomy (AURA) manages the operations and maintenance of the observatory through a cooperative agreement with the NSF, acting as the Executive Agency on behalf of the international partners. NSF's NOIRLab is the US national center for ground-based, nighttime optical astronomy and operates Gemini as one of its programs.[1]

The Gemini telescopes are equipped with modern instruments and excel in optical and near-infrared performance. They utilize adaptive optics technology to counteract atmospheric blurring. Notably, Gemini leads in wide-field adaptive optics assisted infrared imaging and has recently commissioned the Gemini Planet Imager, enabling researchers to directly observe and study exoplanets with extreme faintness compared to their host stars. Gemini supports research across various domains of modern astronomy, including the Solar System, exoplanets, star formation and evolution, galaxy structure and dynamics, supermassive black holes, distant quasars, and the structure of the Universe on large scales.

Previously, Australia and the United Kingdom were also involved in the Gemini Observatory partnership. However, the UK withdrew its funding at the end of 2012. In response, the observatory has significantly reduced operating costs, streamlined operations, and implemented energy-saving measures at both sites. Additionally, both telescopes are now operated remotely from Base Facility Operations centers located in Hilo, Hawaii, and La Serena, Chile. In 2018, KASI has signed an agreement to become a full participant of the Gemini Observatory.[2]

  1. ^ [email protected]. "About". noirlab.edu. Retrieved 2024-07-19.
  2. ^ "Republic of Korea Becomes a Full Participant in Gemini".