Cis-regulatory elements in the promoter contain sequences recognized by transcription factors and the basal transcription machinery. So the location of the TSS is important for understanding the biogenesis of specific isoforms. The idea that different binding partners confer different functional properties has been well studied in tissue-specific gene regulation.[1] For example, the same transcription factor (TF) can direct gene expression in different tissues simply by binding with different TSSs in each tissue.[2] Isoforms harboring changes in the CDS have been the most thoroughly characterized because they commonly give rise to proteins with different functional properties.[3] UTRs regulate the levels of primary transcript in numerous ways: transcript stability, folding and turnover, as well as translation efficiency. UTRs are often the target of miRNA, which typically downregulate transcript expression by triggering degradation or halting translation.[4]
The gene isoforms can be sequenced by Whole Transcriptome Shotgun Sequencing (RNA-Seq).[4] Recently some progress has been made to characterize known isoforms of regeneration associated genes (RAGs) using RNA-Seq, which is important in understanding the isoform diversity in the CNS.[5][6]
^Breitbart RE, Andreadis A, Nadal-Ginard B (1987). "Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes". Annu. Rev. Biochem. 56: 467–95. doi:10.1146/annurev.bi.56.070187.002343. PMID3304142.
^ abvan der Velden AW, Thomas AA (January 1999). "The role of the 5' untranslated region of an mRNA in translation regulation during development". Int. J. Biochem. Cell Biol. 31 (1): 87–106. doi:10.1016/S1357-2725(98)00134-4. PMID10216946.