General game playing (GGP) is the design of artificial intelligence programs to be able to play more than one game successfully.[1][2][3] For many games like chess, computers are programmed to play these games using a specially designed algorithm, which cannot be transferred to another context. For instance, a chess-playing computer program cannot play checkers. General game playing is considered as a necessary milestone on the way to artificial general intelligence.[4]
General video game playing (GVGP) is the concept of GGP adjusted to the purpose of playing video games. For video games, game rules have to be either learnt over multiple iterations by artificial players like TD-Gammon,[5] or are predefined manually in a domain-specific language and sent in advance to artificial players[6][7] like in traditional GGP. Starting in 2013, significant progress was made following the deep reinforcement learning approach, including the development of programs that can learn to play Atari 2600 games[8][5][9][10][11] as well as a program that can learn to play Nintendo Entertainment System games.[12][13][14]
^Pell, Barney (1992). H. van den Herik; L. Allis (eds.). "Metagame: a new challenge for games and learning" [Heuristic programming in artificial intelligence 3–the third computerolympiad] (PDF). Ellis-Horwood. Archived(PDF) from the original on 2020-02-17. Retrieved 2020-02-17.
^Genesereth, Michael; Love, Nathaniel; Pell, Barney (15 June 2005). "General Game Playing: Overview of the AAAI Competition". AI Magazine. 26 (2): 62. doi:10.1609/aimag.v26i2.1813. ISSN2371-9621.
^Canaan, Rodrigo; Salge, Christoph; Togelius, Julian; Nealen, Andy (2019). Proceedings of the 14th International Conference on the Foundations of Digital Games [Proceedings of the 14th International Conference on the Leveling the playing field: fairness in AI versus human game benchmarks]. pp. 1–8. doi:10.1145/3337722. ISBN9781450372176. S2CID58599284.
^Levine, John; Congdon, Clare Bates; Ebner, Marc; Kendall, Graham; Lucas, Simon M.; Miikkulainen, Risto; Schaul, Tom; Thompson, Tommy (2013). "General Video Game Playing". Artificial and Computational Intelligence in Games. 6. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: 77–83. Archived from the original on 9 April 2016. Retrieved 25 April 2015.
^Bowling, M.; Veness, J.; Naddaf, Y.; Bellemare, M. G. (2013-06-14). "The Arcade Learning Environment: An Evaluation Platform for General Agents". Journal of Artificial Intelligence Research. 47: 253–279. arXiv:1207.4708. doi:10.1613/jair.3912. ISSN1076-9757. S2CID1552061.
^Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A.; Veness, Joel; Hassabis, Demis; Bellemare, Marc G.; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K.; Stig Petersen, Georg Ostrovski; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane (26 February 2015). "Human-level control through deep reinforcement learning". Nature. 518 (7540): 529–533. Bibcode:2015Natur.518..529M. doi:10.1038/nature14236. PMID25719670. S2CID205242740.
^McMillen, Colin (2003). Toward the Development of an Intelligent Agent for the Supply Chain Management Game of the 2003 Trading Agent Competition [2003 Trading Agent Competition] (Thesis). Master's Thesis. Minneapolis, MN: University of Minnesota. S2CID167336006.
^Zhang, Dongmo (2009). From general game descriptions to a market specification language for general trading agents [Agent-mediated electronic commerce. Designing trading strategies and mechanisms for electronic markets.]. Berlin, Heidelberg: Springer. pp. 259–274. Bibcode:2010aecd.book..259T. CiteSeerX10.1.1.467.4629.