In mathematical genetics, a genetic algebra is a (possibly non-associative) algebra used to model inheritance in genetics. Some variations of these algebras are called train algebras, special train algebras, gametic algebras, Bernstein algebras, copular algebras, zygotic algebras, and baric algebras (also called weighted algebra). The study of these algebras was started by Ivor Etherington (1939).
In applications to genetics, these algebras often have a basis corresponding to the genetically different gametes, and the structure constants of the algebra encode the probabilities of producing offspring of various types. The laws of inheritance are then encoded as algebraic properties of the algebra.
For surveys of genetic algebras see Bertrand (1966), Wörz-Busekros (1980) and Reed (1997).