Geons are the simple 2D or 3D forms such as cylinders, bricks, wedges, cones, circles and rectangles corresponding to the simple parts of an object in Biederman's recognition-by-components theory.[1] The theory proposes that the visual input is matched against structural representations of objects in the brain. These structural representations consist of geons and their relations (e.g., an ice cream cone could be broken down into a sphere located above a cone). Only a modest number of geons (< 40) are assumed. When combined in different relations to each other (e.g., on-top-of, larger-than, end-to-end, end-to-middle) and coarse metric variation such as aspect ratio and 2D orientation, billions of possible 2- and 3-geon objects can be generated. Two classes of shape-based visual identification that are not done through geon representations, are those involved in: a) distinguishing between similar faces, and b) classifications that don’t have definite boundaries, such as that of bushes or a crumpled garment. Typically, such identifications are not viewpoint-invariant.