Giovanni Battista Rizza

Giovanni Battista Rizza
Giovanni Battista Rizza at work in his home office, in 2003.
Giovanni Battista Rizza at work in his home office, in 2003.
Born(1924-02-07)7 February 1924
Died15 October 2018(2018-10-15) (aged 94)
Parma, Italy
NationalityItalian
Alma materUniversità degli Studi di Genova
Known for
SpouseLucilla Bassotti
Awards
Scientific career
Fields
Institutions
Doctoral advisorEnzo Martinelli

Giovanni Battista Rizza (7 February 1924 – 15 October 2018), officially known as Giambattista Rizza,[3] was an Italian mathematician, working in the fields of complex analysis of several variables and in differential geometry: he is known for his contribution to hypercomplex analysis, notably for extending Cauchy's integral theorem and Cauchy's integral formula to complex functions of a hypercomplex variable,[4] the theory of pluriharmonic functions and for the introduction of the now called Rizza manifolds.

  1. ^ The detailed motivation for the award is reported in the Bollettino UMI 1954, pp. 477–478. The high scientific value of the works of the two young mathematicians induced the commission to ask the benefactors supporting the prize for a double award: their request was accepted.
  2. ^ See the list of the recipients of the medal.
  3. ^ See the list of the recipients of the medal "Benemeriti della Scuola, della Cultura, dell'Arte" and the Decreto ministeriale 17 febbraio 1999 conferring him the title of "Professor Emeritus".
  4. ^ According to the motivation for the award of the "Premio Ottorino Pomini", reported on the Bollettino UMI (1954, p. 477), "Sono particolarmente degni di nota i risultati sui teoremi integrali per le funzioni regolari, sulle estensioni della formula integrale di Cauchy alle funzioni monogene sulle algebre complesse dotate di modulo commutative e sul conseguente sviluppo della relativa teoria, ed infine sulla struttura delle algebre di Clifford" ("Particularly notable results are the ones on the integral theorems for regular functions, the ones on the extension of Cauchy integral formula to complex commutative algebras with modulus, and lastly the ones on the structure of Clifford algebras").