Granzymes are serine proteases released by cytoplasmic granules within cytotoxic T cells and natural killer (NK) cells. They induce programmed cell death (apoptosis) in the target cell, thus eliminating cells that have become cancerous or are infected with viruses or bacteria.[1] Granzymes also kill bacteria[2] and inhibit viral replication. In NK cells and T cells, granzymes are packaged in cytotoxic granules along with perforin. Granzymes can also be detected in the rough endoplasmic reticulum, golgi complex, and the trans-golgi reticulum. The contents of the cytotoxic granules function to permit entry of the granzymes into the target cell cytosol. The granules are released into an immune synapse formed with a target cell, where perforin mediates the delivery of the granzymes into endosomes in the target cell, and finally into the target cell cytosol. Granzymes are part of the serine esterase family.[3] They are closely related to other immune serine proteases expressed by innate immune cells, such as neutrophil elastase and cathepsin G.[4]
Granzyme B activates apoptosis by activating caspases (especially caspase-3), which cleaves many substrates, including caspase-activated DNase to execute cell death. Granzyme B also cleaves the protein Bid, which recruits the proteins Bax and Bak to change the membrane permeability of the mitochondria, causing the release of cytochrome c (which is one of the parts needed to activate caspase-9 via the apoptosome), Smac/Diablo and Omi/HtrA2 (which suppress the inhibitor of apoptosis proteins (IAPs)), among other proteins. Granzyme B also cleaves many of the proteins responsible for apoptosis in the absence of caspase activity. The other granzymes activate cell death by caspase-dependent and caspase-independent mechanisms.[1]
In addition to killing their target cells, granzymes can target and kill intracellular pathogens. Granzymes A and B induce lethal oxidative damage in bacteria by cleaving components of the electron transport chain,[2] while granzyme B cleaves viral proteins to inhibit viral activation and replication.[5] The granzymes bind directly to the nucleic acids DNA and RNA; this enhances their cleavage of nucleic acid binding proteins.[4]
More recently, in addition to T lymphocytes, granzymes have been shown to be expressed in other types of immune cells such as dendritic cells, B cells and mast cells. In addition, granzymes may also be expressed in non-immune cells such as keratinocytes, pneumocytes and chondrocytes.[6] As many of these cell types either do not express perforin or do not form immunological synapses, granzyme B is released extracellularly. Extracellular granzyme B can accumulate in the extracellular space in diseases associated with dysregulated or chronic inflammation leading to the degradation of extracellular matrix proteins and impaired tissue healing and remodelling.[7] Extracellular granzyme B has been implicated in the pathogenesis of atherosclerosis,[8] aneurysm,[9][10] vascular leakage,[11] chronic wound healing,[10][12] and skin aging.[13]
^Hiebert PR, Granville DJ (December 2012). "Granzyme B in injury, inflammation, and repair". Trends in Molecular Medicine. 18 (12): 732–41. doi:10.1016/j.molmed.2012.09.009. PMID23099058.