HEPA filter corrugated internal structure and aluminium support along with the description of its functioning principle (interception, impact and diffusion of dust particles through a dense non-woven fiber material)
HEPA (/ˈhɛpə/, high-efficiency particulate air) filter,[1] also known as a high-efficiency particulate arresting filter,[2] is an efficiency standard of air filters.[3]
Filters meeting the HEPA standard must satisfy certain levels of efficiency. Common standards require that a HEPA air filter must remove—from the air that passes through—at least 99.95% (ISO, European Standard)[4][5] or 99.97% (ASME, U.S. DOE)[6][7] of particles whose diameter is equal to 0.3 μm, with the filtration efficiency increasing for particle diameters both less than and greater than 0.3 μm.[8] HEPA filters capture pollen, dirt, dust, moisture, bacteria (0.2–2.0 μm), viruses (0.02–0.3 μm), and submicron liquid aerosol (0.02–0.5 μm).[9][10][11] Some microorganisms, for example, Aspergillus niger, Penicillium citrinum, Staphylococcus epidermidis, and Bacillus subtilis are captured by HEPA filters with photocatalytic oxidation (PCO). A HEPA filter is also able to capture some viruses and bacteria which are ≤0.3 μm.[12] A HEPA filter is also able to capture floor dust which contains bacteroidia, clostridia, and bacilli.[13] HEPA was commercialized in the 1950s, and the original term became a registered trademark and later a generic trademark for highly efficient filters.[14] HEPA filters are used in applications that require contamination control, such as the manufacturing of hard disk drives, medical devices, semiconductors, nuclear, food and pharmaceutical products, as well as in hospitals,[15] homes, and vehicles.
^Schentag, Jerome J.; Akers, Charles; Campagna, Pamela; Chirayath, Paul (2004). SARS: CLEARING THE AIR. National Academies Press (US). Archived from the original on 2021-01-05. Retrieved 2021-03-04.